An index theorem for the stability of periodic traveling waves of KdV type
نویسندگان
چکیده
There has been a large amount of work aimed at understanding the stability of nonlinear dispersive equations that support solitary wave solutions[20, 7, 3, 6, 19, 29, 28, 30, 35, 36]. Much of this work relies on understanding detailed properties of the spectrum of the operator obtained by linearizing the flow around the solitary wave. These spectral properties, in turn, have important implications for the long-time behavior of solutions to the corresponding partial differential equation[10, 5, 13, 17, 18, 25, 24, 26, 27, 14, 32, 34, 33]. In this paper we consider periodic solutions to equations of KortewegDevries type. While the stability theory for periodic waves has received much some attention[1, 8, 2, 9, 15, 16, 21, 12] the theory is much less developed than the analogous theory for solitary wave stability, and appears to be mathematically richer. We prove an index theorem giving an exact count of the number of unstable eigenvalues of the linearized operator in terms of the number of zeros of the derivative of the traveling wave profile together with geometric information about a certain map between the constants of integration of the ordinary differential equation and the conserved quantities of the partial differential equation. Department of Mathematics, University of Illinois, 1409 W. Green St. Urbana, IL 61801 USA Department of Mathematics, Indiana University,831 East 3rd St, Bloomington, IN 47405 USA Department of Mathematics and Statistics, Calvin College, 1740 Knollcrest Circle SE, Grand Rapids, MI 49546 USA 1
منابع مشابه
Stability of Small Periodic Waves in Fractional KdV-Type Equations
We consider the effects of varying dispersion and nonlinearity on the stability of periodic traveling wave solutions of nonlinear PDEs of KdV type, including generalized KdV and Benjamin–Ono equations. In this investigation, we consider the spectral stability of such solutions that arise as small perturbations of an equilibrium state. A key feature of our analysis is the development of a nonloc...
متن کاملA Hamiltonian-Krein (instability) index theory for KdV-like eigenvalue problems
The Hamiltonian-Krein (instability) index is concerned with determining the number of eigenvalues with positive real part for the Hamiltonian eigenvalue problem JLu = λu, where J is skewsymmetric and L is self-adjoint. If J has a bounded inverse the index is well-established, and it is given by the number of negative eigenvalues of the operator L constrained to act on some finite-codimensional ...
متن کاملSimplest Equation Method for nonlinear solitary waves in Thomas- Fermi plasmas
The Thomas-Fermi (TF) equation has proved to beuseful for the treatment of many physical phenomena. In this pa-per, the traveling wave solutions of the KdV equation is investi-gated by the simplest equation method. Also, the effect of differentparameters on these solitary waves is considered. The numericalresults is conformed the good accuracy of presented method.
متن کاملThe Modulational Instability for a Generalized KdV equation
We study the spectral stability of a family of periodic standing wave solutions to the generalized KdV (g-KdV) in a neighborhood of the origin in the spectral plane using what amounts to a rigorous Whitham modulation theory calculation. In particular we are interested in understanding the role played by the null directions of the linearized operator in the stability of the traveling wave to per...
متن کاملParticle dynamics in the KdV approximation
The KdV equation arises in the framework of the Boussinesq scaling as a model equation for waves at the surface of an inviscid fluid. Encoded in the KdV model are relations that may be used to reconstruct the velocity field in the fluid below a given surface wave. In this paper, velocity fields associated to exact solutions of the KdV equation are found, and particle trajectories are computed n...
متن کامل